INGREDIENTS BY FUNCTION

Tide Stain Release Liquid

Antioxidant
Helps maintain fabric color in the wash by controlling the level of oxygen bleach.
Tetraetyl Ethyldinebisphenol
is an antioxidant used in cleaning products to help maintain fabric color in the wash. This is also used as a stabilizing agent for our formula.

Colorant
Added to lend individuality to the product, or dramatize a special additive contributing to product performance.
FD&C Yellow 3
is a colorant used to add aesthetic appeal and to differentiate between products.

Fragrance
Provide pleasant scent to detergents and washed fabrics.
Fragrance
is used to provide scent to detergent and clothes.

Oxygen Bleach
Provides the detergent with an all-fabric bleaching action for stain and soil removal.
Hydrogen Peroxide
is an oxygen-based bleach that helps the cleaning process by removing and/or decolorizing stains.

Polymer
Used in detergents to form a layer over remaining soils and stain particles, lifting them out of the fabrics.
Other polymers help care for your clothes and provide softness.
Diquaternium Ethoxy Sulfate
is a polymer used in detergent to lift clay soils out of fabrics.

Process Aid
Additive that helps contribute to the performance and efficiency of other ingredients in the product, including stabilization and the prevention of Sudsing in the wash.
Ethanolamine
is an organic liquid that helps the different types of surfactants remain evenly distributed in a concentrated detergent.
Water
is a processing aid added to detergent to help dissolve some of the ingredients.

Surfactant
Wetting agents that help make liquids spread more easily, and play an important role in extracting stains. Surfactants consist of two parts, which first penetrate and extract stains from fabric. They then suspend those stains in water to help prevent the particles from being re-deposited onto garments in the wash.
Alkyl Ethoxylate
is a low-foaming surfactant that helps penetrate stains and extract soils.
Linear Alkylbenzene Sulfonate
is a general-purpose surfactant that helps penetrate stains, extract soils and suspend stain particles in water to prevent them from being redeposited.

Whitening Agent
Additives which adhere to fabrics in the wash as though they were colorants or dyes, to enhance fabric appearance and maintain whiteness or brightness.
Disodium Distyrylbiphenyl Disulfonate
is an optical brightener that makes clothes appear brighter and whiter.

Tide Stain Release Powder
Bleach Activator
An additive that helps boost the performance of active oxygen bleaching systems in a detergent.
Nonanoyloxybenzenesulfonate
is a soap-like additive that carries color-safe oxygen bleach to stains on fabrics.

Chelant
An additive in a laundry detergent used to help soften the wash water.
Diethylenetriamine Pentaacetate (Sodium Salt) = DTPA
captures soils in the water and helps remove stains that are rich in color, such as tea, coffee and red wine.

Colorant
Added to lend individuality to the product, or dramatize a special additive contributing to product performance.
FD&C Blue 1
is a colorant used to add aesthetic appeal and to differentiate between products.

Dispersant
A liquid added to the detergent product to help improve the separation of particles and to prevent settling or clumping.
Sodium polyacrylate
is a polymer used in detergent to lift stains and soils out of fabrics.

Enzyme
Naturally occurring, highly biodegradable proteins used in detergents to break down complex stains and soils, including protein-based stains (grass and blood) and starch-based stains common to many foods. Enzymes can also improve the appearance and feel of fabrics by helping to maintain whiteness or keep colors bright.
Amylase
is an enzyme that breaks down starch-based soils and stains such as sauces, ice-creams and gravy.
Protease
is an enzyme that breaks down soils and stains containing proteins such as collar and cuff soil-lines, grass and blood.

Fragrance
Provide pleasant scent to detergents and washed fabrics.
Fragrance
is used to provide scent to detergent and clothes.

Fragrance Carrier
An additive in the detergent product that helps deliver or encapsulate a fragrance, which helps enhance the consumer’s sensory experience.
Modified Starch
is a carrier which helps to protect fragrance during the wash.

Oxygen Bleach
Provides the detergent with an all-fabric bleaching action for stain and soil removal.
Sodium Percarbonate
Dissolves in water to release oxygen bleach into the wash.

Process Aid
Additive that helps contribute to the performance and efficiency of other ingredients in the product, including stabilization and the prevention of sudsing in the wash.
Polyethylene Glycol
is a polymer used to help stabilize ingredients during the manufacturing of the product.
Sodium Sulfate
is a salt which helps to form free-flowing powder.
Water
is a processing aid added to detergent to help dissolve some of the ingredients.

Removes Water Hardness
Additive that helps reduce the overall hardness of the wash water.
Sodium Aluminosilicate
is an additive which captures hardness from the wash water.
Sodium Carbonate
helps adjust the pH balance of detergent for optimal cleaning results.

Surfactant
Wetting agents that help make liquids spread more easily, and play an important role in extracting stains.
Surfactants consist of two parts, which first penetrate and extract stains from fabric. They then suspend those stains in water to help prevent the particles from being re-deposited onto garments in the wash.
Linear Alkylbenzene Sulfonate
is a general-purpose surfactant that helps penetrate stains, extract soils and suspend stain particles in water to prevent them from being redeposited.
Sodium Palmitate
is a surfactant that helps break down stains and soils, allowing the product to clean the fabrics in the wash.

Tide Stain Release Duo Pac
Pouch Film
Resin material that holds and contains the product prior to dispensing and release in the wash.
Polyvinyl Alcohol is a water-soluble, biodegradable film used to contain and hold the cleaning product prior to release in the wash water.

Liquid Ingredients
Colorant
Added to lend individuality to the product, or dramatize a special additive contributing to product performance.

Liquitint™ Orange is a colorant used to add aesthetic appeal and to differentiate between products.

Process Aid
Additive that helps contribute to the performance and efficiency of other ingredients in the product, including stabilization and the prevention of sudsing in the wash.

Dipropylene Glycol is a cleaning solvent that is highly-effective in removing water-soluble stains.

Glycerin is a colorless, odorless, free-flowing liquid with multiple applications and uses in the consumer products industry, including as an ingredient in food products, toothpaste, soaps and cosmetics.

Water is a processing aid added to detergent to help dissolve some of the ingredients.

Polymer
Used in detergents to form a layer over remaining soils and stain particles, lifting them out of the fabrics. Other polymers help care for your clothes and provide softness.

Diquaternium Ethoxy Sulfate is a polymer used in detergent to lift clay soils out of fabrics.

Powder Ingredients
Bleach Activator
An additive that helps boost the performance of active oxygen bleaching systems in a detergent.

Nonanoyloxybenzenesulfonate is a soap-like additive that carries color-safe oxygen bleach to stains on fabrics.

Chelant
An additive in a laundry detergent used to help soften the wash water.

Diethyleneetriamine Pentaacetate (Sodium Salt) = DTPA captures soils in the water and helps remove stains that are rich in color, such as tea, coffee and red wine.

Dispersant
A liquid added to the detergent product to help improve the separation of particles and to prevent settling or clumping.

Sodium polyacrylate is a polymer used in detergent to lift stains and soils out of fabrics.

Enzyme
Naturally occurring, highly biodegradable proteins used in detergents to break down complex stains and soils, including protein-based stains (grass and blood) and starch-based stains common to many foods. Enzymes can also improve the appearance and feel of fabrics by helping to maintain whiteness or keep colors bright.

Amylase is an enzyme that breaks down starch-based soils and stains such as sauces, ice-creams and gravy.

Polyethylene Glycol
is a polymer used to stabilize ingredients during manufacturing.

Protease is an enzyme that breaks down soils and stains containing proteins such as collar and cuff soil-lines, grass and blood.

Fragrance
Provide pleasant scent to detergents and washed fabrics.

Fragrance is used to provide scent to detergent and clothes.

Fragrance Carrier
An additive in the detergent product that helps deliver or encapsulate a fragrance, which helps enhance the consumer's sensory experience.

Modified Starch
Is a carrier which helps to protect fragrance during the wash.

Oxygen Bleach
Provides the detergent with an all-fabric bleaching action for stain and soil removal.

Sodium Percarbonate
Dissolves in water to release oxygen bleach into the wash.

Process Aid
Additive that helps contribute to the performance and efficiency of other ingredients in the product, including stabilization and the prevention of sudsing in the wash.

Glycerin
is a colorless, odorless, free-flowing liquid with multiple applications and uses in the consumer products industry, including as an ingredient in food products, toothpaste, soaps and cosmetics.

Sodium Palmitate
is a surfactant that helps break down stains and soils, allowing the product to clean the fabrics in the wash.

Sodium Sulfate
is a salt which helps to form free-flowing powder.

Water
is a processing aid added to detergent to help dissolve some of the ingredients.

Removes Water Hardness
Additive that helps reduce the overall hardness of the wash water.

Sodium Aluminosilicate
is an additive which captures hardness from the wash water.

Sodium Carbonate
Helps adjust the pH balance of detergent for optimal cleaning results.

Surfactant
Wetting agents that help make liquids spread more easily, and play an important role in extracting stains. Surfactants consist of two parts, which first penetrate and extract stains from fabric. They then suspend those stains in water to help prevent the particles from being re-deposited onto garments in the wash.

Linear Alkylbenzene Sulfonate
is a general-purpose surfactant that helps penetrate stains, extract soils and suspend stain particles in water to prevent them from being redeposited.

Polyethylene Glycol
is a polymer used to stabilize ingredients during the manufacturing process.
INGREDIENTS BY PROMINENCE

Tide Stain Release Liquid

<table>
<thead>
<tr>
<th>Ingredient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
</tr>
<tr>
<td>Alkyl Ethoxylate</td>
</tr>
<tr>
<td>Linear Alkylbenzenesulfonate</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
</tr>
<tr>
<td>Diquaternium Ethoxysulfate</td>
</tr>
<tr>
<td>Ethanolamine</td>
</tr>
<tr>
<td>Disodium Distyrylbiphenyl Disulfonate</td>
</tr>
<tr>
<td>Tetrabutyl Ethyldinebisphenol</td>
</tr>
<tr>
<td>FD&C Yellow 3</td>
</tr>
<tr>
<td>Fragrance</td>
</tr>
</tbody>
</table>

Tide Stain Release Powder

<table>
<thead>
<tr>
<th>Ingredient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium percarbonate</td>
</tr>
<tr>
<td>Sodium sulfate</td>
</tr>
<tr>
<td>Sodium carbonate</td>
</tr>
<tr>
<td>Sodium Aluminosilicate</td>
</tr>
<tr>
<td>Nonanoyloxy Benzene Sulfonate</td>
</tr>
<tr>
<td>Sodium Polyacrylate</td>
</tr>
<tr>
<td>Water</td>
</tr>
<tr>
<td>Linear Alkylbenzenesulfonate</td>
</tr>
<tr>
<td>Diethylenetriamine Pentaacetate (Sodium Salt)</td>
</tr>
<tr>
<td>Polyethylene Glycol</td>
</tr>
<tr>
<td>Ingredient Name</td>
</tr>
<tr>
<td>-------------------------</td>
</tr>
<tr>
<td>Sodium Palmitate</td>
</tr>
<tr>
<td>Amylase</td>
</tr>
<tr>
<td>Protease</td>
</tr>
<tr>
<td>Modified Starch</td>
</tr>
<tr>
<td>Fragrance</td>
</tr>
</tbody>
</table>

Tide Stain Release Duo Pac

Ingredient Name
Polyvinyl alcohol

Liquid Ingredients
- Dipropylene Glycol
- Diquaternium Ethoxysulfate
- Water
- Glycerin
- Liquitint™ Orange

Powder Ingredients
- Sodium percarbonate
- Nonanoyloxy Benzene Sulfonate
- Sodium carbonate
- Sodium sulfate
- Sodium Aluminosilicate
- Sodium Polyacrylate
- Linear Alkylbenzenesulfonate
- Water
- Amylase
- Polyethylene Glycol
- Sodium Palmitate
- Modified Starch
- Protease
- Fragrance
- Glycerin
- Diethylenetriamine Pentaacetate (Sodium Salt)
SAFETY

Safety: The Most Important Ingredient in Tide®

Ensuring the safety of our Tide® line of fabric care products is a responsibility that P&G takes very seriously. Before any product can appear on store shelves, it must be demonstrated safe to use as directed. But that is only the beginning of our journey. The Earth's resources are limited and valuable, and we have an obligation to future generations to use these resources wisely.

P&G Fabric Care scientists use well-established safety assessment methods to evaluate products and the individual ingredients that make up each product. As the science behind the safety of our products continues to evolve, we are developing new, innovative methods to advance safety research. But our assessments go well beyond basic methodology, because as a Company, P&G is committed to “Doing What’s Right”. Our scientists are also consumers, and many use our products in their homes and encourage their family, friends, and members of their community to use our products in their homes. These guiding principles, and the extensive processes behind them, help to reinforce why we know our products are safe when used as directed.

Safety Assessment 101: What Is It?

Safety Assessment is an interdisciplinary approach, which focuses on the scientific understanding and measurement of ingredients and their possible impact on humans and the environment. Simply put, we use the following equation to understand and quantify that impact:

\[
\text{Risk} = \text{Hazard} \times \text{Exposure}
\]

As we work through these detailed technical assessments, our scientists ask themselves the following questions:

- Can the selected ingredient be safely used in this product or application?
- What could go wrong during the use of this product?
- What is the right amount of product to use?
- Is this product safe for consumers and the environment?

The answers to these questions help us not only effectively “design in” safety to our products through the careful selection of ingredients, but also help us to educate consumers on the safe and effective use of these products that they use in their homes every day.

Safety (or risk) assessment is actually present in the everyday life of every person, and in every profession, even though it may not always be thought of in this way. People in the medical profession, for example, deal with relative risk every day. When they treat a patient with a prescription medication, they have to consider side effects and other risk factors. Likewise, when recommending surgery they have to be reasonably certain that the benefits will outweigh the risks associated with the surgery.

Protecting People

Protecting our consumers is one of our most important jobs. We want our consumers to use our products in their homes with the complete confidence that they and their families will be safe from any injuries. After all, many of our own families use these products. To that end, we fully-evaluate our products in terms of skin and eye safety, as well as the risks that could be experienced with accidental ingestion of the product.

Toxicology is the study of the adverse effects of individual ingredients on living organisms. This science involves an understanding of many aspects of biology and chemistry in order to determine what organs
and organ systems may be effected by certain ingredients, and the mechanisms that cause these effects to take place.

A decision to use a specific ingredient in our products is based on a Human Health Risk Assessment (HHRA), which considers both the potential adverse effects a ingredient may have (i.e., the potential hazards or human health endpoints), and the amount of the ingredient that is required to cause that effect (i.e., the potential exposure or dose). Understanding this balance allows us to make certain that our products are safe for consumers when used as directed.

Protecting our Environment

The first step in protecting the environment is understanding the environment. P&G's environmental safety organization helps to develop that understanding and to ensure that our products and ingredients are compatible with the environment, including soil, waterways, and the rest of our ecosystem.

P&G was one of the first companies in the world to actively study the impact of consumer product ingredients on the environment. Ensuring the environmental safety of our products continues to be a commitment that P&G takes very seriously.

Ecotoxicology is the study of the effects the ingredient may have on plants, animals and bacteria. Decisions to use an ingredient or not are based on Environmental Risk Assessment, which determines the “fate” or outcome of that ingredient within our ecosystem.

Packaging and Recycling

P&G Fabric Care is committed to the principles of reduce, reuse and recycle. We are working with the recycling industry to encourage our consumer to recycle more of our packages. With complex computerized structural models, we are learning how to reduce the amount of plastic in our detergent bottles without sacrificing their strength and durability.

Our Scientists: Who We Are, and What We Do

Working together, teams of highly trained scientific experts make sure that P&G covers both human and environmental areas of safety concerns. Procter & Gamble goes to great lengths to ensure the safety of our products and their packages when used as directed, and our operations for our employees, consumers and the environment.

We consider this to be a requirement for conducting responsible business, and an essential element of building and maintaining public trust in our products. We carefully evaluate the safety of our products and ingredients before they go to market, using well-established safety assessment methods. P&G employs the same safety standards in every country where we develop, produce and sell our products. P&G also complies with all applicable legal requirements in our markets around the world.

As evidence of this commitment, more than 600 Proctor & Gamble scientists and technical experts work full-time to ensure the safety and regulatory compliance of our products when used as directed and our operations, represented within 18 countries around the world. Our scientists often work at the edge of environmental and human health safety assessment, and routinely publish their findings in peer-reviewed scientific journals. These individuals work across a variety of disciplines and specialty areas.

Our Human Safety Organization

The Human Safety Organization employs scientists from diverse fields, including reproductive toxicology, immunology, respiratory toxicology, molecular biology, genotoxicity and carcinogenicity. More recently, genomics is being applied in the various toxicological disciplines in line with the latest trends in the field.
P&G’s researchers work closely with scientists at universities, governmental bodies and industry organizations to share knowledge and work collaboratively on new and improved methods and approaches to advance the science of toxicology. Because P&G scientists work at the leading edge of toxicology and human health risk assessment, their work and research findings are routinely published in peer-reviewed scientific literature.

Our Environmental Safety Organization

P&G started the Environmental Safety Organization in the late 1960s, which was located almost exclusively in Cincinnati, Ohio, for 20 years. Today, the organization spans the globe, allowing us to serve and better-understand the many markets in which Procter & Gamble sells and distributes our products around the world.

The Environmental Science Organization employs doctoral scientists in diverse fields such as environmental toxicology, microbiology, biodegradation, ecology, environmental engineering, analytical chemistry, microbial ecology, environmental modeling and life cycle assessment. Beyond laboratory research, much of their expertise lies in computer-based applications like exposure modeling, structure-activity relationships (SAR), probabilistic risk assessment and geographical information systems (GIS).

Environmental Risk Assessment (ERA) integrates a scientific balance between Environmental Effects Testing (which measures the potential impact of the ingredient on the ecosystem); with Environmental Fate Testing (which evaluates how an ingredient moves through and is integrated into the ecosystem). P&G is widely-regarded and recognized for its innovation and contribution to these methods and processes within the global consumer products industry.

Beyond the Store: In Touch and Connected with our Consumers

Once P&G scientists have established and documented the safety of the ingredients, a product can be introduced onto the market. The thoroughness of our safety standards and processes is then confirmed by the billions of uses of our products every day that delight our consumers. But, that is only the beginning of our journey. P&G provides a toll-free telephone number on the label or package of all of the products that we market, which users can call to ask questions and share their experiences. P&G personnel responsible for safety monitor these calls to ensure that the experience in the market is as expected. Scientists promptly investigate any alleged safety questions to determine what type of problems may exist and how they should be addressed.

This follow-up and commitment provides continuous feedback that enables P&G to maintain a high standard of product quality and consumer satisfaction. This feedback also gives us valuable information on how to develop innovative new products to improve consumers’ lives, now and for generations to come.